Try our mobile app

Alphamin announces updated mineral resource and mineral reserve estimates and life of mine schedule for Mpama North

Published: 2022-08-02 18:31:33 ET
<<<  go to JSE:APH company page
                                                                                       NEWS RELEASE

C/o ADANSONIA MANAGEMENT SERVICES LIMITED, Suite 1,
PERRIERI OFFICE SUITES, C2-302, Level 3, Office Block C,
La Croisette, Grand Baie 30517, Mauritius

Alphamin Resources Corp.
Continued in the Republic of Mauritius
Date of incorporation: 12 August 1981
Corporation number: C125884 C1/GBL
TSX-V share code: AFM
JSE AltX share code: APH
ISIN: MU0456S00006


      ALPHAMIN ANNOUNCES UPDATED MINERAL RESOURCE AND MINERAL RESERVE
         ESTIMATES AND LIFE OF MINE SCHEDULE FOR MPAMA NORTH TIN MINE
2 August 2022 – Alphamin Resources Corp. (AFM:TSXV, APH:JSE AltX, “Alphamin” or the
“Company”), a producer of 4% of the world’s mined tin1 from its high-grade operation in the
Democratic Republic of Congo, is pleased to announce updated Mineral Resource and Mineral
Reserve estimates along with an updated life of mine schedule (LoM) for the Mpama North Mine.


HIGHLIGHTS

        ➢ The updated LoM schedule shows:-
                  •     replacement of contained tin depleted over the past 2.5 years
                  •     contained tin inventory over LoM of 154.5kt at 30 June 2022 (31 Dec 2019:
                        154.2kt);

        ➢ The updated Resource shows:-
                  •     155.7kt (30 June 2019: 199kt) and 41.2kt (30 June 2019: 21.8kt) tin contained
                        (which includes mineral reserves) at 30 April 2022 in Measured/Indicated and
                        Inferred Resources, respectively, with an 8.0% and a 65.4% increase in grade,
                        respectively.

        ➢ The updated Reserve shows:-
                  •     121.4kt tin contained at 30 June 2022 (31 Dec 2019: 133.4kt) in the Proven and
                        Probable mineral reserve categories with 15.7% increase in grade to 4.64% Sn .


Updated Mpama North Life of Mine Plan
An updated Mineral Resource Estimate (MRE) and Mineral Reserve estimation have been
developed for the Mpama North Mine. These updates replace those announced in the Technical
Report of 22 April 2022 which, for Mpama North, were not updated and remained the same as

1
    Data obtained from International Tin Association Tin Industry Review Update 2021
those contained in the Technical Report effective 31 December 2019. The culmination of these
Resource and Reserve updates is the re-design and scheduling of the Mpama North Mine into an
updated Life of Mine (LoM) schedule. A comparative summary of the previous and updated LoM
schedules is presented in Table 1.
Table 1: Mpama North LoM Schedule Comparison
                                                                    31 December 2019   30 June 2022
                        Description                         Units
                                                                      LoM Schedule     LoM Schedule
 RoM tonnes                                                  Mt            3.85             3.23
 Grade delivered to process plant                           % Sn           4.00             4.78
 Tin content                                                kt Sn         154.2            154.5
 Cut-off grade                                              % Sn           1.60             1.00
*Note: Rounding may result in computational discrepancies


Mining has progressed steadily at Mpama North since the 2019 estimation of the Reserves and
LoM schedule with 990,821 tonnes of ore having been extracted in the 30 months Dec 2019 –
Jun 2022. A number of operational improvements and changes resulted in actual mine
performance surpassing the 2019 LoM schedule. Run of Mine (RoM) tonnes mined for the
financial years 2020 and 2021 exceeded the 2019 LoM schedule by 18.5% and 8.1%,
respectively.
In addition, the Reserve cut-off grade calculated in the 31 December 2019 LoM schedule of 1.6%
Sn, has at an operational level consistently been reduced due to the improved RoM output,
optimised mine planning, out-performance versus dilution assumptions, improvements in the
process plant recoveries and an increase in the tin price. These actual results have now been
captured in the updated Reserve cut-off grade and LoM schedule which are declared at 1.0% Sn.
Exploration success in the form of strike extension of the high-grade chute in the Mpama North
deeps target plus the reduced cut-off grade valorises previously excluded lower grade Resource
Blocks, converting them into Reserve blocks, which has further added valuable additions to the
LoM schedule.
The result of these positive factors is that all contained tin depleted since 31 December 2019 has
been replaced in the new LoM schedule. The 154.5kt contained tin in the updated LoM versus
the previous 154.2kt has also been accompanied by a valuable grade increase of 19.6% to 4.78%
Sn from 4.00% Sn previously scheduled.
As with the previous LoM schedule of 31 December 2019, the updated LoM schedule contains a
small portion of Inferred Resources. The Inferred Resource constitutes 18.9% of all RoM tonnes
delivered to the plant. 50% of these planned Inferred Resources are scheduled in the final three
years of mining in the deep portion of the mine and will be the subject of infill Resource drilling to
increase confidence before they are included in any shorter term mine plans or budgets.
The annual contained tin mined target remains ~15,000 tonnes per year which, after expected
processing recoveries of 78%, results in ~12,000 tonnes per year of contained tin in concentrate
production at the Mpama North Mine.
Mpama North Mineral Resource Estimate
The updated Mineral Resource Estimate (MRE) at Mpama North is illustrated in Figure 1. It is
based on new resource exploration drilling on the northern deeps high-grade extensions as well
as partial mine depletions (area shaded grey) since the last estimate effective 30 June 2019.
All resource additions have resulted from the renewed Mpama North Mine resource exploration
drilling commenced in 2021. The drilling targeted and successfully extended the known
dimensions of the highly mineralised linear plunging high-grade chute, returning some of the best
project intercepts to date (see Appendix 2). On-going drilling continues at Mpama North with
mineralisation intercepted outside the mineral resource boundaries declared in this update.
The updated MRE includes 9 NQ size additional core intersections from the recent exploration
drilling at the Mpama North Mine which were completed from August 2021 to March 2022. These
new intersections in addition to the original 122 NQ size and 21 PQ size drillholes completed pre-
mining between July 2012 to November 2015, form the basis for the updated MRE. The updated
MRE and previous MRE for comparison are presented in Table 2.
Figure 1: Updated Mpama North Resource Grade Block model (0.5% Sn cut-off)




                                                                                         Super high
                                                                                         grade resource
                                                                                         additions




Table 2: Bisie Mpama North Mineral Resource at 0.50% Sn Cut-Off Grade (30 June 2022)

                                      Quantity                  Grade              Tin Content
            Category                    Mt                      % Sn                    kt
                                 06/2019    04/2022    06/2019      04/2022    06/2019      04/2022
 Measured                         0.33       0.04        4.75           2.16    15.6           0.9
 Indicated                        3.99       3.09        4.59           5.02    183.4         154.9
 Total Measured and Indicated     4.32       3.13        4.61           4.98    199.0         155.7
 Total Inferred                   0.48       0.55        4.57           7.56    21.8           41.2
    Notes:
        1.   All tabulated data have been rounded and as a result minor computational errors may occur.
        2.   Mineral Resources which are not Mineral Reserves and have no demonstrated economic viability.
        3.   Mineral Resources are reported inclusive of Mineral Reserves.
        4.   Alphamin has an 84.1 percent interest in ABM. The Government of the Democratic Republic of Congo
             (GDRC) has a non-dilutive, 5% share in ABM. The Gross Mineral Resource for the Project is reported.
        5.   The 2022 MRE is effective 30 April 2022 and has been depleted by mining from mine surveys as at 30
             April 2022 and an estimate of the extent of artisanal mining to 725 mamsl.
        6.   The 2019 MRE is effective 30 June 2019 and is depleted by mining from mine surveys as at 30 June
             2019 and an estimate of the extent of artisanal mining to 725 mamsl.


Differences between the previous MRE and updated MRE are a decrease in Measured and
Indicated Resources contained tin content of 43.3kt Sn with an increase in grade of 8.0% to 4.98%
Sn. An increase in Inferred Resources contained tin content of 19.4kt and an increase in grade of
65.4% to 7.56% Sn is also observed for Inferred Resources.
In addition to any resource growth in the northern depths high-grade zone, promising additional
resource growth potential is likely at Mpama North Mine in the shallow northern strike extension
as well as in the down-dip eastern dip extension, both of which are currently undergoing
exploration drilling.
The full Mineral Resource checklist of assessment and reporting criteria are presented in
Appendix 3. The Mineral Resource estimate has been completed by Mr. J.C. Witley (BSc Hons,
MSc (Eng.)) who is a geologist with 33 years’ experience in base and precious metals exploration
and mining as well as Mineral Resource evaluation and reporting. He is a Principal Resource
Consultant for The MSA Group (an independent consulting company), is registered with the South
African Council for Natural Scientific Professions (SACNASP) and is a Fellow of the Geological
Society of South Africa (GSSA). Mr. Witley has the appropriate relevant qualifications and
experience to be considered a “Qualified Person” for the style and type of mineralisation and
activity being undertaken as defined in National Instrument 43-101 Standards of Disclosure of
Mineral Projects.


Mpama North Mineral Reserve Estimate
An updated Mineral Reserve estimation was completed subsequent to the updated MRE.
Modifying factors in the updated Reserve estimate are largely based on:-

   •   Actual performance statistics and site-specific experience and reconciliation data to
       support revised modifying factors (mining recovery, dilution, pillar loss etc.),
   •   More detailed geotechnical data from mining allowing the mine to be divided into
       geotechnical domains with different stope design parameters per domain,
   •   Increased mining levels per mining echelon for stoping, resulting in a reduction in the pillar
       losses and an increased extraction ratio,
   •   A reduced cut-off grade based on updated calculations from actual operating costs,
       increased tin prices and the impact from higher processing recoveries, and
   •   Recent additions to Mineral Resources from 2021/2022 exploration activities.
The updated Reserve estimate and previous estimate for comparison are presented in Table 3.
Table 3: Bisie Mpama North Mineral Reserve at 1.0% Sn Cut-Off Grade (30 June 2022)

                                                    Quantity                    Grade              Tin Content
                 Category                             Mt                        % Sn                    kt
                                                2019        2022         2019           2022     2019        2022
 Proven Mineral Reserve                            0.05        0.00        3.77           1.38      1.9         0.0
 Probable Mineral Reserve                          3.28        2.62        4.01           4.64    131.5       121.3
 Total Proven and Probable Mineral
 Reserves                                          3.33        2.62        4.01           4.64    133.4       121.4
    Notes:
        1.   The Mineral Reserve has been reported in accordance with the requirements and guidelines of NI43-
             101 and are 100% attributable to ABM.
        2.   Apparent computational errors due to rounding and are not considered significant.
        3.   The Mineral Reserves are reported with appropriate modifying factors of dilution and recovery.
        4.   The Mineral Reserves are reported at the head grade and at delivery to Plant.
        5.   Although stated separately, the Mineral Resources are inclusive of the Mineral Reserves.
        6.   No Inferred Mineral Resources have been included in the Mineral Reserve estimate.
        7.   Quantities are reported in metric tonnes.
        8.   The input studies are to the prescribed level of accuracy.
        9.   The Mineral Reserve estimates contained herein may be subject to legal, political, environmental or other
             risks that could materially affect the potential exploitation of such Mineral Reserves


The Mineral Reserve assessment and reporting criteria are presented in Appendix 4. The Mineral
Reserve estimate has been prepared by Mr. Clive Brown, Pr. Eng., B.Sc. Engineering (Mining),
is a qualified person (QP) as defined in National Instrument 43-101 and has reviewed and
approved the scientific and technical information contained in this news release. He is a Principal
Consultant and Director of Bara Consulting Pty Limited, an independent technical consultant to
the Company.


____________________________________________________________________________

FOR MORE INFORMATION, PLEASE CONTACT:
Maritz Smith
CEO
Alphamin Resources Corp.
Tel: +230 269 4166
E-mail: msmith@alphaminresources.com
____________________________________________________________________________


JSE Sponsor
Nedbank Corporate and Investment Banking, a division of Nedbank Limited

2 August 2022
CAUTION REGARDING FORWARD LOOKING STATEMENTS
Information in this news release that is not a statement of historical fact constitutes forward-
looking information. Forward-looking statements contained herein include, without limitation,
statements relating to the updated LoM schedule for Mpama North, and planned future
exploration activities and anticipated outcomes. Forward-looking statements are based on
assumptions management believes to be reasonable at the time such statements are made.
There can be no assurance that such statements will prove to be accurate, as actual results and
future events could differ materially from those anticipated in such statements. Accordingly,
readers should not place undue reliance on forward-looking statements. Although Alphamin has
attempted to identify important factors that could cause actual results to differ materially from
those contained in forward-looking statements, there may be other factors that cause results not
to be as anticipated, estimated or intended. Factors that may cause actual results to differ
materially from expected results described in forward-looking statements include, but are not
limited to: uncertainty of future exploration and assay results and consistency with past results
and expectations;; uncertainties inherent in estimates of Mineral Resources and Mineral
Reserves; global geopolitical and economic uncertainties; volatility of metal prices; uncertainties
with respect to social, community and environmental impacts; uninterrupted access to required
infrastructure; adverse political events; impacts of the global Covid-19 pandemic as well as those
risk factors set out in the Company’s Management Discussion and Analysis and other disclosure
documents available under the Company’s profile at www.sedar.com. Forward-looking
statements contained herein are made as of the date of this news release and Alphamin disclaims
any obligation to update any forward-looking statements, whether as a result of new information,
future events or results or otherwise, except as required by applicable securities laws.


Neither the TSX Venture Exchange nor its regulation services provider (as that term is defined in
the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of
this news release.
Appendix 1: SAMPLE PREPARATION, ANALYSES AND QUALITY CONTROL AND QUALITY
ASSURANCE (QAQC)
For sample preparation, analyses and quality control and quality assurance, see the Company’s
news release dated 07 March 2022 entitled “ALPHAMIN ANNOUNCES MAIDEN MINERAL
RESOURCE ESTIMATE AND POSITIVE PRELIMINARY ECONOMIC ASSESSMENT FOR
MPAMA SOUTH”
             Appendix 2: SIGNIFICANT INTERCEPTS FROM RECENT DRILLING AT MPAMA NORTH.
             EARLIER DRILLING INTERCEPTS ARE REPORTED IN THE TECHNICAL REPORT DATED
             22 APRIL 2022 FILED ON SEDAR.COM (0.5% Sn lower threshold)


                 Easting       Northing                                                                   Width              Sample Position
   Hole                                    RLm    Azi (°)   Dip (°)    From          To           Sn %
                   GPS            GPS                                                                     (m)1     mid_x          mid_y        mid_z
MND001                                                                No significant intercepts
MND002                                                                No significant intercepts
MND003                                                                No significant intercepts
MND004             583392        9886283    682       270       -52     524.8         525.1        0.67     0.30   582,994        9,886,250     347.0
MND005                                                                No significant intercepts
MND006                                                                No significant intercepts
MND007             583100        9886210    726       270       -75     402.0         402.5        0.58     0.45   582,987        9,886,211     340.5
MND009             582881        9886200    752       270       -65       96.4         96.8        2.28     0.40   582,842        9,886,200     667.3
MND010                                                                No significant intercepts
                                                                        419.3         428.0       21.85     8.74   583,021        9,886,194     312.7
MND011             583103        9886211    726       270       -83
                                                                        430.6         438.9       17.52     8.30   583,018        9,886,193     302.0
MND012             582950        9886140    765       270       -60       64.7         65.4       12.20     0.65   582,916        9,886,142     699.8
                                                                        142.7         143.0       10.05     0.28   582,852        9,886,146     651.2
MND013             582945        9886142    759       270       -50
                                                                        177.0         178.0        1.02     1.00   582,829        9,886,146     625.5
MND014                                                                No significant intercepts
MND015a            582950        9886140    755       270       -70     172.3         172.7        6.34     0.36   582,887        9,886,144     594.8
MND016             583063        9886162    741       270       -50     249.4         253.0        0.62     3.58   582,895        9,886,161     554.1
MND017             583195        9886171    744       270       -50     385.0         386.0        1.02     1.00   582,947        9,886,165     450.1
MND018             583063        9886162    740       270       -60     284.7         285.0       11.70     0.30   582,912        9,886,160     498.4
                                                                        432.2         444.0       25.94    11.76   582,992        9,886,162     357.3
MND019             583196        9886171    744       270       -64
                                                                        445.0         445.6       15.30     0.55   582,988        9,886,162     351.2
                                                                        484.9         492.3        7.08     7.36   583,024        9,886,160     288.3
MND020             583196        9886171    744       270       -72
                                                                        495.0         499.3        7.50     4.25   583,020        9,886,159     280.6
MND021             583195        9886171    744       270       -57     425.3         425.6       10.50     0.30   582,962        9,886,178     388.9
                                                                        547.0         558.3        7.62    11.30   583,060        9,886,205     220.5
MND022a            583244        9886211    741       270       -73     559.0         565.9       16.37     6.85   583,056        9,886,205     211.4
                                                                        567.7         569.5        1.31     1.83   583,054        9,886,205     205.7
                                                                        511.6         524.7       21.27    13.10   583,038        9,886,208     249.3
MND023             583204        9886236    738       270       -75
                                                                        527.0         528.4        2.35     1.42   583,033        9,886,207     240.8
1. Apparent widths, not true thickness
  Appendix 3: Mineral Resource Checklist of Assessment and Reporting Criteria

Drilling techniques          A total of 195 exploration drillholes have been completed at Mpama North. All
                             drillholes were diamond drill cored and drilled from surface (mostly NQ) at
                             angles of between -60° and -75°. The drillholes were drilled from east to west
                             along section lines spaced between approximately 25 m and 50 m apart.
                             21 PQ sized holes from a metallurgical drilling campaign were also included
                             that were drilled in three clusters approximately 25 m apart.
Logging                      All of the drillholes were geologically logged by qualified geologists. The
                             logging is of an appropriate standard for grade estimation.
Drill sample recovery        Core recovery in the mineralised zones was observed to be very good and is
                             on average greater than 95%. Five of the shallow drillholes intersected
                             artisanal workings and so recovery of the high-grade mineralisation was poor
                             and therefore the data from these holes were not used for grade estimation.
Sampling methods             Half core samples were collected continuously through the mineralised zones
                             after being cut longitudinally in half using a diamond saw. Drillhole samples
                             were taken at nominal 1 m intervals, which were adjusted to smaller intervals
                             in order to target the vein zones. Lithological contacts were honoured during
                             the sampling. MSA’s observations indicated that the routine sampling was
                             performed to a reasonable standard and is suitable for evaluation purposes.
Quality of assay data and    2012-2015 Drilling
laboratory tests             The assays were conducted at ALS Chemex in Johannesburg where
                             samples were analysed for tin using fused disc ME-XRF05 with 10%
                             precision and an upper limit of 10 000 ppm. This was reduced to 5,000 ppm
                             from 2014 onwards. Over limit samples were sent to Vancouver for ME-
                             XRF10 which uses a Lithium Borate 50:50 flux with an upper detection limit
                             of 60% and precision of 5%.
                             ME-ICP61, HF, HNO3, HCL04 and HCL leach with ICP-AES finish was used
                             for 33 elements including base metals. ME-OG62, a four-acid digestion, was
                             used on ore grade samples for Pb, Zn, Cu & Ag.
                             External quality assurance of the laboratory assays for the Alphamin samples
                             was monitored. Blank samples, certified reference materials and duplicate
                             samples were inserted with the field samples accounting for approximately
                             10% of the total sample set.
                             The QAQC measures used by Alphamin revealed the following:
                                 •    The high-grade CRM (31.42% Sn) assays by ALS prior to 2015
                                      returned values approximately 8% higher than the certified mean
                                      value. 98 pulp rejects from this period of between 1.5% and 60% Sn
                                      were re-assayed by ALS in 2016 together with the high-grade CRM.
                                      The 2016 assays correlated well with those prior to 2015 and the
                                      high-grade CRM returned values within tolerance. Therefore, the
                                      pre-2015 assays were accepted for estimation without modification.
                                 •    The lower grade CRM assays (<2% Sn) indicated that the Sn and
                                      Cu assays were accurate and unbiased, consistently returning
                                      values within two standard deviations of the accepted CRM value.
                                 •    The field duplicates confirmed the nuggetty nature of the tin
                                      mineralisation. The majority of the duplicate assays were within
                                      20% of the field sample.
                                 •    Blank samples indicated that no significant contamination occurred.


                            2021-2022 Drilling
                             At the on-site ABM laboratory (overseen by Anchem), samples were first
                             checked off against the submission list supplied and then weighed and oven
                             dried for 2 hours at 105 degrees Celsius. The dried samples were crushed by
                             jaw crusher to 75% passing 2 mm, from which a 250 g riffle split was taken.
                             This 250 g split was pulverised in ring mills to 90% passing 75 μm from which
                             a sample for analysis was taken. Samples were homogenised using a
                             corner-to-corner methodology and two samples were taken from each pulp,
                               one of 10 g for on-site laboratory assaying and another 150 g sample for
                               export and independent accredited 3rd party laboratory assaying.
                               Received samples at ALS Johannesburg were checked off against the list of
                               samples supplied and logged in the system. Quality Control is performed by
                               way of sieve tests every 50 samples and should a sample fail, the preceding
                               50 samples are ground in a ring mill pulveriser using a carbon steel ring set
                               to 85 % passing 75μm. Samples are analysed for tin using method code ME-
                               XRF05 conducted on a pressed pellet with 10% precision and an upper limit
                               of 5,000ppm. The over-limit tin samples are analysed as fused disks
                               according to method ME-XRF15c, which makes use of pre-oxidation and
                               decomposition by fusion with 12:22 lithium borate flux containing 20%
                               Sodium Nitrate as an oxidizing agent, with an upper detection limit of 79%
                               Sn.
                               ME-ICP61, HF, HNO3, HCL04 and HCL leach with ICP-AES finish was used
                               for 33 elements including base metals. ME-OG62, a four-acid digestion, was
                               used on high-grade samples for Pb, Zn, Cu & Ag.
                               The Mpama North samples were assayed in batches together with the
                               Mpama South samples. External quality assurance of the laboratory assays
                               for the Alphamin samples was monitored. Blank samples (299), certified
                               reference materials (434) and duplicate samples (357) were inserted with the
                               field samples accounting for approximately 11% of the total sample set.
                               The QAQC measures used by Alphamin revealed the following:
                                   •    Blank samples indicated that no significant contamination occurred
                                        overall. Low levels of contamination (mostly <200 ppm Sn) mostly
                                        occurred, however 12 values between 229 ppm and 1,285 ppm
                                        were returned. Given the high grades at Bisie, the levels of
                                        contamination are not significant.
                                   •    Five different CRMs were used with expected values between
                                        0.18% and 31.42% Sn. The lower grade CRMs were prepared by
                                        Ore Research and Exploration (OREAS) and the two high grade
                                        CRMs (4.19% and 31.42% Sn) by the Bureau of Analysed Samples
                                        Ltd (BCS). In general, ALS returned values within the tolerance
                                        limits (three standard deviations) for the OREAS CRMs, although
                                        slightly lower than the expected values. Assays of the highest grade
                                        BCS CRM were mostly outside of the three standard deviation limits
                                        but within ±4%of the expected value. For the 5.07% Sn BCS CRM,
                                        assays were consistently lower than the expected value by as much
                                        as 7%. Overall, the CRMs results indicate a slight negative bias for
                                        the ALS assays.
                                   •    Coarse duplicates show mostly excellent correlation, indicating
                                        minimal error in the process and a high degree of repeatability.
Verification of sampling and   A selection of cores representative of the 2012-2015 drilling programme at
assaying                       Mpama North were visually verified during three site visits by the QP (July
                               2013, May 2014 and August 2015). The QP observed the mineralisation in
                               the cores and compared it with the assay results. It was found that the
                               assays generally agreed with the observations made on the core
                               The QP took ten quarter core field duplicates for independent check assay in
                               2013, which confirmed the original sample assays within reasonable limits for
                               this style of mineralisation
                               150 pulp duplicates were sent to SGS (Johannesburg) in 2013 for
                               confirmation assay and a further 173 were assayed in 2015. In 2015, 99 pulp
                               duplicates were sent to Setpoint (Johannesburg) for confirmation assays.
                                   •    The pulp duplicates assayed by SGS in 2013 showed excellent
                                        correlation with the ALS assays at both high- and low-grade ranges.
                                   •    SGS assays were lower than ALS for grades above 20% for the
                                        2014 data checked in 2015. SGS under-reported the grade of all the
                                        CRMs that were inserted. The high-grade CRM was under assayed
                                        by approximately 5%.
                                   •    Setpoint assays were lower than ALS for grades above 10% for the
                                        2014 data checked in 2015. ALS tended to under-report the grades
                                           of the CRMs.
                                Since the 2012 to 2015 drilling took place, the QP has visited the Bisie site on
                                two occasions. From 10 to 12 March 2020 the Mpama North underground
                                workings were visited, and the on-site laboratory was inspected. From 11 to
                                18 August 2021 the available Mpama South cores, current Mpama North sites
                                and drilling were inspected as well as upgrades to the on-site laboratory.
                                Core photos from the drilling programme have regularly been provided to the
                                QP for inspection.
Location of data points         All except two of the Bisie surface drillhole collars used in the Mineral
                                Resource estimate were surveyed by D.GPS. All collar elevations were
                                validated against a LiDAR topographic survey.
                                Down-hole surveys were completed for all the holes drilled at Mpama North.
                                From 2012 to 2015 these were mostly by standard multishot techniques and
                                therefore the accuracy of the survey was impacted by natural magnetism.
                                The latest drillhole surveys have been competed using a north seeking gyro.
Tonnage factors (in situ bulk   For the 2012-2015 drilling, specific gravity determinations were made for
densities)                      2,698 drillhole samples using a laboratory gas pycnometer. A regression
                                formula of tin grade against specific gravity was developed that was applied
                                to the samples that did not have direct SG measurements. The assigned
                                specific gravity was interpolated into the block model using ordinary kriging.
                                The laboratory pycnometry readings compared well with a number of SG
                                measurements completed using the Archimedes principle of weight in air
                                versus weight in water.
                                For the 2021-2022 drilling, 1,154 relative density measurements were made
                                on mineralised and unmineralised samples using the weight in air versus
                                weight in water method.
Data density and distribution   The holes were drilled from east to west along section lines spaced
                                approximately 50 m to 60 m apart with infill drilling on 25 m to 30 m spaced
                                sections in a portion of the shallower area. Along the section lines, the
                                drillholes intersected the mineralisation between approximately 25 m and 50
                                m apart in most of the Mineral Resource area.
                                21 PQ sized holes from a metallurgical drilling campaign were included that
                                were drilled in three clusters approximately 25 m apart. Within the clusters,
                                the PQ holes were drilled approximately 5 m apart.
                                In the Mineral Resource area, 131 NQ drillholes were used for the grade
                                estimate. Several holes did not intersect the mineralised zone or intersected
                                low-grade mineralisation outside of the area currently defined as a Mineral
                                Resource, and five of the shallow drillholes intersected artisanal workings.
                                The data from these holes were not used for grade estimation.
Database integrity              Data are stored in an Access database. MSA completed spot checks on the
                                database and is confident that the Alphamin database is a reasonably
                                accurate representation of the original data collected.
Dimensions                      The area defined as a Mineral Resource extends approximately 750 m in the
                                down plunge direction. It extends for a width of approximately 300 m in the
                                plane of mineralisation perpendicular to the plunge. The main zone of the
                                Mineral Resource, which accounts for 97% of the Mineral Resource, is on
                                average approximately 9 m thick, although is narrower (less than 1 m) at the
                                margins and up to 20 m thick in the central areas.
                                The minor zones that occur several metres above and below the main zone
                                are considerably narrower than the main zone and cover areas of between
                                100 m and 200 m in the dip and strike directions.
Geological interpretation       The mineralised intersections in drill core are clearly discernible. The Mineral
                                Resource is interpreted to occur as irregular tabular mineralised zones,
                                dipping 65° to the east, containing several narrow veins, blocks and
                                disseminations of cassiterite. The mineralised zones are hosted in chlorite
                                schist that is the result of intense alteration and may originally have been a
                                distinct stratigraphic interval or structure.
                                The main zone of the Mineral Resource is almost continuous for
                                approximately 750 m although it has been affected by a number of faults
                                causing local displacement. Several faults with throws in excess of 10 m
                                have been modelled.
                                    •    The Main Vein mineralisation consists of a number of uncorrelated
                                         cassiterite veins within pervasively chloritised schist. This zone
                                         generally occurs over thicknesses of between 2 m and 22 m with an
                                         average thickness of approximately 9 m. The Main Vein zone is
                                         generally the highest grade and most consistent overall.
                                     •   Hanging Wall Vein mineralisation occurs within partly chloritised
                                         schist and micaceous schist between 4 m and 20 m above the Main
                                         Vein. This zone of mineralisation is generally between 0.5 m and 4
                                         m wide and occurs in the central area of the deposit and tapers out
                                         northwards. The middling between the Hanging Wall Vein and the
                                         Main Vein decreases in areas and it is possible that this vein
                                         merges into the Main Vein in some parts of the deposit.
                                     •   Footwall Vein (FW Vein) mineralisation occurs within the micaceous
                                         schist and amphibolite schist between 2 m and 12 m below the Main
                                         Vein. This zone is restricted to the southern areas, is very narrow
                                         (<50 cm) and high-grade in its most northern occurrences but
                                         thickens to the south to several metres. It is possible that this vein
                                         merges into the Main Vein in some parts of the deposit.
                                A three-dimensional wireframe model was created for the three zones of
                                mineralisation based on a grade threshold of 0.35% Sn. The main zone is the
                                most consistent zone and occurs within a persistent chlorite schist. Narrower
                                less continuous zones occur above and below the main zone within chlorite-
                                mica schists.
Domains                         The mineralisation was modelled as three tabular zones containing irregular
                                vein style mineralisation. A hard boundary was used to select data for
                                estimation in order to honour the sharp nature of vein boundaries.
Compositing                     Sample lengths were composited to 1 m. Composites of less than 1 m
                                occurred in the narrow vein areas, which were retained. Accumulations of
                                Sn%-density-composite length were calculated for grade estimation so that
                                narrow high-grade composites did not excessively influence the estimate.
Statistics and variography      Two populations of Sn mineralisation occur, a high-grade population of
                                cassiterite veins and a lower grade population containing disseminated
                                cassiterite as vein fragments and blebs. The data were separated into the
                                two statistical populations, which resulted in the coefficient of variation for the
                                Sn accumulation composites in the high-grade population being 0.5 and for
                                the lower grade population being 1.6. The histograms are positively skewed.
                                Normal Scores variograms were calculated in the plane of the mineralisation,
                                down-hole and across strike. Variogram ranges for the Sn accumulation in
                                the main zone were modelled with ranges in the order of 75 m in the longest
                                direction of continuity and 60 m in the second direction. Reliable variograms
                                could not be produced for either the hangingwall or footwall zones and the
                                main zone variogram was used to estimate these areas.
Top or bottom cuts for grades   Top caps were applied to outlier values by examination of histograms and
                                cumulative probability plots. Top caps were applied to the accumulation value
                                for tin, which affected 2.5% of the data.
Data clustering                 21 PQ sized holes from a metallurgical drilling campaign were included that
                                were drilled in three close clusters approximately 25 m apart. Within the
                                clusters the PQ holes were drilled approximately 5 m apart. Outside of the
                                metallurgical sampling area the grid is approximately regular.
Block size                      20 mN by 2 mE by 10 mRL three-dimensional block models were used. The
                                blocks were divided into sub-cells to better represent the interpreted
                                mineralisation extents. The blocks were rotated into the plane of
                                mineralisation prior to estimation.
Grade estimation                The accumulation of tin grade, density and composite length were estimated
                           using ordinary kriging. Copper, lead, zinc, silver, arsenic and sulphur grades
                           were also estimated.

                           The Sn%-density-composite length accumulations were divided into a high-
                           grade population (>80 %t/m) and a lower grade population (<80 %t/m). The
                           probability of a block containing values above and below this threshold was
                           estimated by indicator kriging. Outside of the indicator variogram range,
                           estimates did not use the extreme high grades (>80 %tm) in order to reduce
                           the influence of these values on estimates further away from them. The high-
                           and low-grade populations were estimated separately using ordinary kriging
                           and the block model grade was then assigned based on the estimated grade
                           of the high and low grade and their proportion in each block.

                           A minimum number of 4 and a maximum of 10 one metre composites were
                           required for the high-grade Sn-accumulation population. A minimum number
                           of 8 and a maximum of 24 one metre composites were required for the lower
                           grade Sn-accumulation population and other variables. Search distances and
                           orientations were aligned with the variogram range and mineralised trends.
                           Estimates were extrapolated for a maximum distance of 20 m up- or down-
                           plunge from the nearest drillhole intersection. Extrapolation is minimal over
                           most of the Mineral Resource as the up-and down dip limits have been well
                           defined by the drilling, except in a portion on the down-plunge area that is
                           open at depth.
Resource classification    Measured Mineral Resources were declared where the drillhole spacing is
                           approximately 25 m and where the geological model has low variability. The
                           mineralisation was classified as Indicated Mineral Resources if block
                           estimates occur within the 50 m drilling grid, so that all Indicated estimates
                           are informed by samples within the variogram range. The remainder of the
                           interpreted model within the sparser drilled area was classified as Inferred
                           Mineral Resources with a maximum extrapolation from a drillhole of 20 m
                           along plunge. The up-plunge extremity is separated from the main area by a
                           fault and the structural interpretation in this area is tenuous and it does not
                           contain sufficient data to classify them as Indicated Mineral Resources.
                           Consequently, this area was classified as Inferred Mineral Resources.
                           The high-grade mineralisation of reasonable tonnage leads no doubts as to
                           reasonable potential for economic extraction, it being one of the highest-
                           grade tin deposits in the world. Mpama North is currently a profitable mine.
Mining cuts                The thickness of the mineralisation was honoured in the estimate and as a
                           result some areas will be more sensitive to dilution than others. The
                           thickness, grade and steep dip implies that the Mineral Resource can be
                           extracted using established underground mining methods.
Metallurgical factors or   The tin mineralisation occurs as cassiterite, an oxide of tin (SnO2). The Cu,
assumptions                Zn and Pb mineralisation occurs as sulphides. Each of these minerals is
                           amenable to standard processing techniques for each metal. At the Mpama
                           North Mine, gravity separation is used to create a saleable tin concentrate
                           and the sulphide minerals are removed from the tin concentrate as they
                           represent impurities.
Legal aspects and tenure   Alphamin through its wholly owned DRC subsidiary, Alphamin Mining Bisie
                           SA, has a Mining License PE 13155 which includes the Bisie Tin Mine.
                           Alphamin has an 80.75 percent interest in ABM. The Government of the
                           Democratic Republic of Congo (GDRC) has a non-dilutive, 5% share in ABM.
Audits, reviews and site   The following review work was completed by MSA:
inspection                     •    Inspection of approximately 25% of the Alphamin cores used in the
                                    Mineral Resource estimate
                               •    Database spot check
                               •    Inspection of drill sites
                               •    Independent check sampling
                               •    Inspection of the on-site sample preparation laboratory.
      Appendix 4: Mineral Reserve and Mine Schedule Modifying factors
Modifying Factors


                              TABLE 0.1 MODIFYING FACTORS APPLIED
 Modifying factor                       Value       Comment
 Mining recovery
         Development and slyping        98%         Based on historical performance reported
         Long hole stopes               98%
         Sill pillars (other)           61%

 Dilution
            Development and slyping         8%              Based on historical performance reported
            Long hole stopes                10%
            Sill pillars                    18%

A cut-off grade calculation was performed based on the metal price provided by Alphamin of US$32,000 per
tonne and costs as per the 2022 mine budget, provided by Alphamin and reviewed by Bara. The breakeven
grade calculation is shown in the table below. This breakeven grade of 1.5% Sn was applied to determine
the limits of mining while the marginal cut-off grade of 1.0% was applied to select stopes for inclusion in the
mine schedule and Mineral Reserve.



                  TABLE 0.2 BISIE TIN PROJECT CUT OFF GRADE ESTIMATE - JUNE 2022

                                                             Breakeven               Marginal
                                                            cut-off grade          cut-off grade
      Item                                    Unit              Value                 Value
      Tin price                           US$/tonne             32,000                32,000
      Operating costs
      On mine costs                       US$/t RoM              196                    86
      Off mine costs (fixed)              US$/t RoM              168                   168
      Total cost                         US$/t milled            364                   254
      Breakeven recovered grade                %                 1.14                  0.79
      Plant recovery                           %                 78%                   78%
      Breakeven RoM grade                      %                  1.5                   1.0


The stoping and development productivities to be used in the life of mine plan were discussed and agreed
with mine management. The scheduling rates included consideration of:
o Performance over the year to date
o Changes to shift arrangements to CONOPS
o Maintenance and services installation requirements
o Equipment availability.
Table 4.3 below summarises the advance rates used in the mine schedule.


                  TABLE 4.3 SCHEDULING ADVANCE PER MONTH PER END TYPE
                                                               FW      Ore
                                        Unit        Decline   Drive   Drive
     Shifts per day                         Unit                   2           2               2
     Days per month                         Unit                  26          26              26
     Blast hole length                      metres                3.2         3.2             3.2
            Effective advance                        metres                2.8         2.8          2.8
            Time to drill and blast (shifts)         Unit                   1           1            1
            Time to muck and support (shifts)        Unit                   1           1            2
            Blasts per day                           Unit                   1           1           0.7
            Advance pr day                           metres                2.8         2.8          1.9
            Blast efficiency                         %                    80%          80%         80%
            Advance per month                        Metres/month          58           58          39
            Advance used in schedule                 Metres/month          60           40          40

       There are currently three development jumbos available on site and they are planned at a maximum of 240
       metres per month. These drill rigs are allocated in the mine schedule as follows:
       o One to the ramp (Decline) and ancillary excavations off of the ramp.
       o One to lateral waste development
       o One to ore development and slyping.

       The long hole drilling capacity of the long hole production drill rig limited the long hole stoping production to a
       maximum of 27,000 tonnes per month.

       The mining schedule targets RoM tin content delivered to plant of minimum 15,000 tonnes tin per year. The
       processing plant has capacity to process a maximum of 40,000 tonnes per month. This processing
       constraint was used as a constraint in the mining schedule. The Rom tonnage on a monthly basis based on
       the grade in order to achieve the required tin production within the processing and mining constraints.

       The targeted production rate of an average of 1500 t contained Sn per month can be maintained for 99
       months (Eight years and three months). The mining schedule includes 18.9% made up of inferred resources
       which are considered too speculative geologically to have the economic considerations applied to them that
       would enable them to be categorized as mineral reserves.

Ore reserve statement

       Only Measured and Indicated Mineral Resources are converted to Mineral Reserves. The total life of mine
       schedule included 18.9 % of the scheduled production from Inferred Mineral Resources, which was not
       included in the Mineral Reserves. This Mineral Reserve estimate is based on a depletion date of 30 June
       2022. It followed an assessment of the economic viability of the Mineral Resources that were scheduled for
       depletion before confirming them as Mineral Reserves.

                               Summary of Reserves for Bisie Tin at 30 June 2022
                                        Quantity                Tin Grade                           Tin Content
       Classification                     (Mt)                      (%)                                 (kt)
                                   2022        2019         2022         2019                    2022        2019
       Proven Mineral Reserve      0.00         0.05        1.38         3.77                     0.0         1.9
       Probable Mineral Resource   2.62         3.28        4.64         4.01                    121.3       131.5
       Total Mineral Reserves      2.62         3.33        4.64         4.01                    121.4       133.4

       Source: Bara (2022)
               Notes:
               o The Mineral Reserve has been reported in accordance with the requirements and guidelines of
                   NI43-101 and are 100% attributable to ABM.
               o Apparent computational errors due to rounding and are not considered significant.
               o The Mineral Reserves are reported with appropriate modifying factors of dilution and recovery.
               o The Mineral Reserves are reported at the head grade and at delivery to Plant.
               o The Mineral Reserves are stated at a price of US32,000/t Sn as at 30 June 2022.
                o    Although stated separately, the Mineral Resources are inclusive of the Mineral Reserves.
                o    No Inferred Mineral Resources have been included in the Mineral Reserve estimate.
        o    Quantities are reported in metric tonnes.
        o    The input studies are to the prescribed level of accuracy of a minimum pre-feasibility study
             level.
        o    The Mineral Reserve estimates contained herein may be subject to legal, political,
             environmental or other risks that could materially affect the potential exploitation of such
             Mineral Reserves.

The Qualified Person for Mineral Reserves has satisfied himself that the methodology used for estimating
and presenting Mineral Reserves herein conform to the requirements and guidelines of NI 43-101 and
therefore supports this Mineral Reserve estimate as stated above.